RADWIN JET vs. TD LTE 3.5GHz including business case analysis

July 2016 version: 1.0

THE WIRELESS CONNECTIVITY CHOICE

JET Advantages over TD-LTE 3.5GHz

- Network CapEx
 - Lower initial investment
 - Ideal for new greenfield areas:
 - Service can be initiated through single PtP link that can be evolved into PtMP (remote PtP unit can be converted by S/W to CPE)
 - Ideal for small networks and small amount of subscribers per base given area (Save EPC cost, reduced Base station cost)
 - Enable fast ROI in low users density deployment
 - Smaller backhaul capacity is required uplink traffic can be redirected without reaching the EPC
- Network OpEx
 - Lower Base station power consumption (100w per site vs. 500w or more)
 - Save in tower space (integrated sector antenna and GPS antenna)
 - Flat network- simplified operation and maintenance

JET Advantages over TD-LTE 3.5GHz

Service

- Best supports Enterprise / SME customers
 - Symmetrical traffic aggregate capacity is maintained fix while in LTE the more symmetrical is the traffic the less is the aggregate capacity (see picture)
 - Secured Committed Information Rate (CIR)
 - Layer 2 support (VLAN, QinQ) RADWIN solution is transparent to layer 2 while LTE is based on layer 3
- Better address Video Surveillance due to grater uplink capacity

JET Advantages over TD-LTE 3.5GHz

Network Capacity

- Greater up link capacity QAM 256 or QAM 64 vs. QAM 16, Low cost CPEs don't support Uplink MIMO (only downlink)
- Beamforming avoids mutual interference between sectors. LTE sector capacity is reduced to half when works in reuse one.

Business Case Assumptions

- Operation channel: 20MHz , 3.5GHz
- LTE:
 - Sector Base station cost (including antenna) : \$8000
 - Outdoor 3.5GHz CPE cost : \$120
 - EPC cost: 0 (it is assume that EPC is already available for mobile service)
 - For maximum capacity of sector the sector works in reuse 2 (rather than reuse 1)
- JET:
 - JET Base station including attached Beamforming antenna
 - Two CPE models for Enterprise and for residential
 - CPE with integrated 13dbi antenna

Business Case Results Summary

- Residential network (No SLA customers)
 - JET cost per residential user is lower than LTE by 50% to 10% when amount of users in a sector is below ~40.
- Enterprise network (SLA customers based on Committed Information Rate-CIR)
 - JET cost per enterprise user is lower than LTE by 50% to 10% when amount of users in a sector is below ~24.
 - The more symmetric is the CIR, the higher is the cost saving per user when using JET
 - The higher is the CIR , the higher is the saving of cost per user when using JET
 - JET cost per user is lower then LTE by far when DL: UL CIR ratio is 1:1
 - JET cost per user is lower than LTE by at least 20% for service of 4Mbps downlink CIR (even when DL:UL is 4:1)

JET Vs. LTE – Residential User Cost

 JET cost per residential user is lower than LTE by 50% to 10% when amount of users in a sector is below ~40.

Cost per user – CPE + Base station overhead

JET Vs. LTE User cost – Enterprise Service

 JET cost per enterprise user is lower than LTE by 50% to 10% when amount of users in a sector is below ~24.

JET Vs. LTE User Cost – Variety of Enterprise Service (Capacity & Symmetry)

- The more symmetric is the CIR (Committed Information Rate), the higher is the cost saving per user when using JET
- The higher is the CIR , the higher is the saving of cost per user when using JET
- JET cost per user is lower then LTE by far when DL: UL CIR ratio is 1:1
- JET cost per user is lower than LTE by at least 20% for downlink CIR of 4Mbps (even when DL:UL is 4:1)

Reasoning: LTE capacity is decline when traffic become symmetry

The LTE Need for EPC Makes JET Even More Attractive

- RADWIN JET network is a flat one, no need for specific core network
- The LTE need for EPC generates an overhead on the cost per user, both CapEx and OpEx wise
- As shown in the graph, the investment in EPC makes the LTE cost per user expensive than JET, unless the amount of users in a network are quite high.
- As for example, for \$1M EPC the cost of LTE become equal to JET only if the network is larger than 78k users.

3/24/2020

Thank You! Any Questions?

